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Abstract
Recent experiments observed an electronic spin resonance (ESR) signal from
localized ytterbium ions in a Yb-based compound, manifesting non-Fermi-
liquid properties. Motivated by these experiments we develop a theory for the
low temperature ESR in metallic systems with multichannel magnetic (Kondo)
impurities.

Some rare-earth and actinide compounds exhibiting properties of heavy fermions [1] and so-
called non-Fermi-liquids [2] have been the topic of many studies because of their large variety
of low temperature properties. The low energy physics of these systems is determined by a
hybridization of rare-earth or actinide localized electrons of 4f or 5f states with conduction
electron band(s). Such a hybridization in metals produces the Kondo effect [3], i.e. the
screening of the spin of a localized electron by spins of conduction electrons. It is usually
believed that in heavy fermion compounds this gives rise to spin fluctuations of localized
spin moments, which are completely screened below some characteristic temperature, i.e. the
ground state is a singlet with a finite magnetic susceptibility. Due to the screening effective
masses of carriers are enhanced, compared to normal metals. This manifests itself in
large values of the low temperature magnetic susceptibility, temperature linear Sommerfeld
coefficient of the electron specific heat, and low temperature coefficient of the resistivity. Such
a behaviour can be described in the framework of a standard Fermi liquid theory [4] with
the enhanced effective electron mass. On the other hand, for non-Fermi-liquid compounds
the magnetic susceptibility and the Sommerfeld coefficient of the specific heat are usually
divergent at low temperatures, while the resistivity often reveals a power-law low temperature
behaviour with exponents less than two (the latter is characteristic for Fermi liquids and it is
observed in heavy fermion compounds [1]). It turns out that there is no magnetic ordering in
heavy fermion or non-Fermi-liquid compounds (they are metals with zero order parameter).
However, very often, by tuning some parameters, like an external pressure, or by a chemical
substitution, such systems undergo phase transitions to ordered magnetic or superconducting
states [1, 2].
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Among many experimental methods of investigation, the ESR serves as a valuable tool
to study the intrinsic spin dynamics of many systems. In ESR experiments a static magnetic
field is applied to the investigated system, and one measures the absorption of an ac magnetic
field, polarized perpendicular to the static field direction. Due to such a geometry, the ESR
serves as a very good method to study the magnetic anisotropy, and it is very sensitive to local
electronic properties of a magnetic ion. However, it is usually believed that Kondo ions in
heavy fermion systems are not appropriate ESR probes. The reason is that the typical rate
of spin fluctuations of Kondo ions is expected to cause a large ESR linewidth [5, 6]. The
spin of a local magnetic moment has to be screened by the ones of conduction electrons for
temperatures less than the Kondo temperature, TK. Hence, as it was believed, this makes
the ESR signal undetectable. The Kondo temperature, according to known theories, also
determines the characteristic linewidth of the ESR [7]. From this viewpoint, according to
previously existing theories, the ESR linewidth for systems with their TK ∼ 10 K has to be
about 15 T. This means that such a signal is unobservable. This is why, up to the last year, a
direct observation of the Kondo ion by the ESR has been reported only in dilute Kondo alloys
with extremely small Kondo temperatures [8].

Very recently the observation of the ESR signal was reported for a localized (Kondo)
Yb ion in a rare-earth compound YbRh2Si2 [9]. The authors showed that the observed ESR
spectra could be ascribed to a bulk Yb3+ resonance. They observed narrow ESR lines, of
which the linewidths were much smaller than the Kondo temperature known from different
experiments. Previous measurements of the static magnetic susceptibility, electron specific
heat, and resistivity in YbRh2Si2 [10] revealed the effective Kondo temperature TK ∼ 24 K.
Nuclear magnetic resonance (NMR) study observed the behaviour, which was consistent with
that characteristic Kondo temperature, TK ∼ 15 K [11], i.e. of the same order of magnitude
as the one derived from experiments on static magnetic susceptibility and specific heat [10].
In the framework of known theories of the ESR for Kondo systems such a Kondo temperature
should be related to the linewidth 37 T (for TK ∼ 24 K) or 22 T (for TK ∼ 15 K). On the other
hand, the experiment [9] was performed down to 1.5 K, and the characteristic linewidths were
about 30 mT (corresponding to the characteristic temperature 20 mK)4. Hence, for the first
time, the ESR signal was observed at temperatures below the Kondo temperature of a magnetic
ion. This fact can indicate the existence of unscreened magnetic moments of Yb3+ below the
Kondo temperature in that compound.

Motivated by the above, in this work we develop the low temperature theory of the ESR
for multichannel Kondo systems, which can reveal the non-Fermi-liquid behaviour5. Let us
consider the Hamiltonian

H =
∑

k,σ,m

εkc†
k,σ,mck,σ,m − µB H

[
gi S

z +
g

2

∑
k,m

(c†
k,↑,mck,↑,m − c†

k,↓,mck,↓,m)

]

− h(t)giµBSx,y − h(t)gµB

∑
k,σ,σ ′,m

c†
k,σ,mσ

x,y
σ,σ ′ ck,σ ′,m

+
∑

k,k′,σ,σ ′,m
Jm �Sc†

k,σ,m �σσ,σ ′ ck′,σ ′,m + Hanis, (1)

4 Notice that NMR experiments [11] also observed some crossover in the temperature behaviour of NMR
characteristics at 200 mK.
5 We do not claim that our theory totally describes the ESR experiments on YbRh2Si2 (the dense system, while our
theory is developed for Kondo impurities). However, we believe that some important conclusions from our theory are
common for all non-Fermi-liquid Kondo-type systems, in which there is no coherence between localized magnetic
moments and/or between conduction electrons.



Low temperature ESR theory for multichannel Kondo systems 1253

where c†
k,σ,n (ck,σ,n) are creation (destruction) operators of conduction electrons (σ = ↑,↓, m =

1, . . . ,M denotes the number of a channel), �S, with �S2 = S(S +1), is the operator of the spin of
an impurity, Jm > 0 are channel-dependent exchange constants of a local spin–spin interaction
between the impurity and conduction electrons, gi is the effective g-factor of the impurity, g is
the effective g-factor of conduction electrons, µB is the Bohr magneton, H is the dc magnetic
field, h(t) is the ac magnetic field, andHanis is the term which describes the magnetic anisotropy
of the interaction (e.g.,Hanis = ∑

k,k′ ,σ,σ ′,m J αm Sαc†
k,σ,mσ

a
σ,σ ′ ck′,σ ′,m +(1/2)Am(Sα)2 +O([Sα]4)

for the impurity–host coupling with the uniaxial magnetic anisotropy along the axis α), here
supposed to be small, compared to the values of the isotropic exchange interaction between
the impurity and conduction electrons and the bandwidth of conduction electrons. Obviously,
if gi strongly differs from g, one should observe two different ESR signals in experiments. We
shall not study such a situation in detail, supposing gi ∼ g in what follows (and we shall use
units in which gi ∼ g = h̄ = µB = 1).

Consider the circular time dependence of the ac magnetic field, i.e. the h(t)-dependent
part of equation (1) has the form h[exp(iωt)S+

tot + H.c.], where h � H is the magnitude of
the ac field, ω ∼ H is its frequency, and S±

tot = Sx
tot ± iSy

tot are linear combinations of the
projections of the total spin of the system. In such a case we can use a unitary transformation
(turn all spins about the z-axis) to remove the explicit time dependence from the term of the
Hamiltonian proportional to h. It is clear that if Hanis = 0, the explicit time dependence is
totally removed by such a unitary transformation from the Hamiltonian. This means that the
ESR signal will have resonance at ω = H , with zero linewidth (δ-function peak) and no shift
of the resonance due to spin–spin interactions. Naturally, additional interactions, not included
in equation (1), e.g., an electron–lattice coupling or electron–nuclear one, will produce the
broadening of such a δ-function line and/or a shift of the position of the resonance. A similar
situation will appear if the magnetic field H is directed along the axis of the uniaxial magnetic
anisotropy: one can remove the explicit time dependence from the Hamiltonian with the help
of the unitary transformation. Observe that if the polarization of the ac field is not circular one
can drop other (nonresonance) terms proportional to h, present in the Hamiltonian, after the
unitary transformation, because h � H, ω. In the case of, e.g., the linear polarization of the ac
field, i.e. h cos(ωt)Sx

tot , a resonance–antiresonance situation is possible with ω = ±H , usual
for the ESR case. However, we shall consider only the resonance with ω = H in detail in what
follows. In our work we study the general case Hanis �= 0, considering the weak magnetic
anisotropy as a perturbation.

In the framework of the linear response theory the absorption of the ac magnetic field is
given by

I (ω) = h2ω

2
χ ′′

aa(q = 0, ω), (2)

where a ⊥ z is the direction of the polarization of the ac field and χ ′′(q, ω) is the imaginary
part of the dynamical magnetic susceptibility, which we take at q = 0 because the ESR is a
local characteristic (usually in the ESR experiments the wavelength of the ac field is larger
than the size of a sample). We point out that if the magnetic anisotropy is along the x direction
then ω2χ ′′

xx (0, ω) = H 2χ ′′
yy(0, ω) (or, if there is an angle φ between the axis x and a one has

ω2χaa(0, ω) = [H 2 cos2 φ + ω2 sin2 φ]χyy(0, ω)).
The dynamical magnetic susceptibility can be calculated using spin–spin correlation

functions of the problem. To find the latter we use a bosonization approximation. Then
our approach becomes similar to the one of [12] for the ESR theory of quantum spin chains.
Such a similarity is not unexpected, since the behaviour of a Kondo impurity and the behaviour
of quantum spin chains is often described by similar mathematical apparatuses; see, e.g., [13].
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It is well known that in the dilute limit one can linearize the dispersion law of conduction
electrons about Fermi points, and re-formulate the Kondo Hamiltonian in a one-dimensional
representation (only s waves scatter off the impurity) [13]. Then following, e.g., [14, 15] we use
the boson representation of Fermi operators of chiral (left- and right-moving) electron fields
and the boundary conformal field theory to calculate correlation functions (related to Green
functions) of the problem. We point out here that creation and destruction operators of electrons
are decomposed into charge, spin and channel parts in the bosonization description. In the
considered multichannel case the magnetic susceptibility of the system is related, as usual,
to the spin part of electron creation and destruction operators in the boson representation.
However, each of those parts affects correlations of others in the Kondo problem.

It was found [14] that the low temperature two-point correlation function of two primary
fields � with the scaling dimensions	( j) = j ( j + 1)/(M + 2), where j = 1/2, 1, . . . ,M/2,
of the M-channel Kondo problem can be written as (τ = −it)

〈�( j1)(r1, τ )�
( j2)(r2, 0)〉 = δ j1, j2(r1 − r2)

2 j1

[
πT

vF sin(πT τ )

]2	( j1)

. (3)

The dimension of spin operators is related to j = 1, while those for electron operators
correspond to j = 1/2 (spin operators can be represented as a product of two fermion
operators). We are interested in left–right correlation functions, due to the standard connection
of left- and right-moving fields in an open chain ψR,σ (r, t) = −ψL,σ (−r, t).

In [15], using the boundary conformal field theory, it was found that at low energies and
long distances the two-particle correlation function (e.g., the spin–spin correlator, important
for the calculation of the magnetic susceptibility) involves double s-wave terms and shows
a nontrivial behaviour. Notice that to calculate the three-dimensional Green function of the
system with the magnetic impurity at the origin one can decompose the wavefunctions into
spherical harmonics, and then take into account that only the s-wave harmonic is modified (it
is different from the noninteracting value for the system without impurities). The correction
to the Green function of the spin part of electrons (in the bosonization representation) due to
a single Kondo impurity can be written as

G(r1, r2, ω) = G0(r1 − r2, ω) + G0(r1, ω)T (ω)G
0(−r2, ω), (4)

where T (ω) is the scattering matrix. We emphasize again that we are interested in spin–
spin correlation functions, related to two-particle functions: in the bosonization language
each boson operator is related to the product of two Fermi operators. It is important to
emphasize that three-point functions (which are necessary to find the leading correction to
the Green function) are completely specified by the conformal invariance [14, 15]. For a dilute
set of impurities the second term of the left-hand side of equation (4) can be replaced by
c
∫

dr G0(r1 − r, ω)T (ω)G0(r − r2, ω), where c is the concentration of impurities. The
averaging over impurities’ positions restores the translational invariance of the problem.
Obviously, it can be performed for small values of c, ignoring impurity–impurity interactions.
In this limit one can neglect the difference in the behaviour of three-dimensional and one-
dimensional ensembles of disordered impurities. The summation over multiple-impurity terms
(ignoring impurity–impurity couplings) yields the standard Dyson’s form of the retarded Green
function in the boson representation

G(k, ω) ≈ [ω2 − k2 −(ω, k, T )]−1. (5)

Here (ω, k, T ) = cT (ω) is the self-energy for the dilute ensemble of noninteracting
impurities in the first order in the concentration of impurities. Equation (4) is written for the
Green function of the one-dimensional boson (spin) field, in the presence of an interaction
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between bosons caused by the magnetic anisotropy in the impurity–conduction electron
coupling (which is considered in our work as a perturbation; see below).

References [14, 15] derived the expression for the dynamical magnetic susceptibility
as a function of (bosonic) Green functions for the multichannel Kondo problem. The
channel anisotropy does not change the form of that expression. This is why, taking into
account the above analysis, the dynamical magnetic susceptibility becomes proportional to
−ω[k2 −ω2]/[k2 −ω2 −(ω, k, T )]. The static magnetic field in the bosonization language
can be eliminated by the re-definition of boson field (equivalent to the shift of chiral fields).
After the Fourier transformation of spin operators this means that quasi-momenta are shifted,
i.e. k → H . In the situation of a small magnetic anisotropy, we have the resonance at
ω = H , and, hence, the shift of the resonance position is determined by the real part of
(H, H )/2H � H, T , while its imaginary part defines the linewidth of the ESR.

The correction to the Green function (i.e. the self-energy) can be found by following
perturbation theory in a leading irrelevant operator at the fixed point(s) of the problem, see
equation (4). Notice that for the case of the total screening of the impurity spin S = M/2,
i.e. in the Fermi liquid situation, one has to perform calculations to the second order in the
leading irrelevant operator at the Fermi liquid fixed point.

The behaviour of Kondo impurities with magnetically anisotropic interactions and
different couplings between conduction electrons for M channels is characterized by M fixed
points. This is why M low energy scales T1 < · · · < TM are generated due to the channel
anisotropy. The system flows away from one fixed point to a new one. It is important to
emphasize that at T → 0 one has the Fermi liquid-like behaviour with the finite static
magnetic susceptibility and the Sommerfeld coefficient of the specific heat. In the scaling
limit for a small easy-plane (|J αm + Jm | � |Jm |) magnetic anisotropy one can parametrize
Jm = 2γm/θmν, J αm/Jm = δm/3, δm = (θ2

m/2) + (γ 2
m/8), Am = −(Jm + J αm)δm/3, cf [13, 16].

Hence, the magnetic anisotropy is characterized by the parameters γm ≈ cos(Jm + J αm)/ cos Jm

(the isotropic limit Am = J αm = 0 pertains to θm → 0, γm → 0, γm/θm = −Jm/2). For
the most important case of two channels we can explicitly find (cf [17]) two low energy
scales as TK ≈ vF exp(−π |θ1|/νγ1), and Ta ≈ vF cos(π J1/2J2) exp(−π |θ2|/νγ2), where vF

is the Fermi velocity of conduction electrons, and we supposed J1 � J2. For T, H > TK

(in resonance H ∼ ω) we are in a high-energy regime, where the spin of the impurity
is not screened. For Ta < T, H < TK, the intermediate fixed point of the multichannel
Kondo problem provides the non-Fermi-liquid divergent behaviour of the static magnetic
susceptibility and the Sommerfeld coefficient of the specific heat (it is logarithmic for M = 2
and S = 1/2 [17, 18]). However, for T, H < Ta that divergent behaviour is saturated [17, 18],
characteristic to the Fermi liquid. If the channel anisotropy is absent, J1 = J2, then Ta = 0,
and there is only the non-Fermi-liquid low energy regime. On the other hand, in the extremal
channel-anisotropic situation J1 = 0 only one channel of conduction electrons is connected
with the impurity, then the only low energy scale Ta determines the standard Kondo crossover
to the low temperature Fermi liquid behaviour, as it must be.

In fact, in our perturbation scheme we calculate the self-energy  as usual, via the
correction to the Green function, cf equation (4), considering the magnetic anisotropy as
a perturbation. Then, the perturbation parameter (the coupling constant λ) is related to
parameters of the magnetic anisotropy (we have shown above that in such an approach it
results in Kondo scales T1, . . . , TM ). On the other hand, in our, in fact, conformal perturbation
theory the number of channels actually defines the scaling dimension for the operator under
consideration. If the leading irrelevant boundary operator has the dimension 1 +	, then the
corresponding coupling constant of the perturbation λ has the dimension −	 < 0 (hence, it
is irrelevant).
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Let us concentrate on the most important case S = 1/2. This case is of interest for
YbRh2Si2, because the first excited crystalline electric field (CEF) state is 115 K higher than
the lowest one. It was shown that in the case of the M-channel uniaxial Kondo interaction the
(only) leading irrelevant operator has the scaling dimension 1 +	, with 	 = 2/(2 + M) [19]
for M � 2, i.e. in this case we have to take j = 1, and 	 = 	(1), see above. On the other
hand, for M = 1 (the single-channel case) the only leading irrelevant operator belongs to the
conformal tower of the identity operator with the scaling dimension two [15, 19]. Notice that in
the absence of the magnetic anisotropy, J αm = Am = 0, one has = 0 and the Green function
has a pole at ω = H . Hence, the ESR intensity is proportional to the δ-function, as it must
be. We point out that our conformal perturbation theory describes all low temperature regions,
comparing with the low energy Kondo scales T1, . . . , TM . In each energy region, however,
one has to take into account the necessary fixed point(s), which determine low energy physics.

Consider the most interesting case M = 2. At very low temperatures, T � Ta (notice that
we are interested in the singular part of the Green function), where the coupling constant λ is
determined by Ta , we obtain after some algebra the Fermi liquid behaviour with the resonance
shift due to Kondo impurities	ω ∼ H Ta ln(Ta/TK)/TK and the linewidth of the ESR	H ∼
T T 2

a ln2(Ta/TK)/T 2
K. In the intermediate range of temperatures Ta < T < TK the non-Fermi-

liquid regime persists. It is governed by the intermediate fixed point. In this regime the real part
of the dynamical magnetic susceptibility is given by χ ′(ω, T ) = c ln[TK/max(ω, T )]/π2TK

and the imaginary part can be written as χ ′′(ω, T ) = c tanh(ω/2T )/2πTK. In the boundary
limit, i.e. near an impurity, vF|τ |  r1,2, the temperature dependences of the shift of the
resonance caused by Kondo impurities and the linewidth of the ESR are proportional to√

T/TK. On the other hand, in the bulk limit, vF|τ | � r1,2, the temperature dependences
are determined by the Fermi liquid exponent. Such a difference is the manifestation of the
known ‘bottleneck’ effect, i.e. the difference in the behaviour of the ESR for impurities and
conduction electrons even if their g-factors are equal. It is possible that in ESR experiments
with multichannel Kondo systems one can observe (divided in such a way) contributions from
conduction electrons and impurities separately, if the concentration of impurities is low. For
T > TK, one has to use λ ∼ ν Jeff(T ) ∼ [ln(TK/T )]−1 for Jeff → ∞, which yields the shift
of the resonance due to Kondo impurities inversely proportional to H ln(TK/T ), while the
linewidth of the ESR is proportional to T [ln(TK/T )]−2.

Our treatment can only be applied for low enough temperatures. At higher temperatures
lattice vibrations have to modulate the CEF of ligands, which, by means of spin–orbit
interactions, cause the spin–lattice relaxation. That process determines the exponential
temperature dependence of the linewidth of the ESR ∼ [eC/T − 1]−1, where C is the value of
the CEF, at high temperatures [20].

Let us apply our findings to the ESR signal observed in YbRh2Si2. YbRh2Si2 has the ‘easy
plane’ magnetic anisotropy (in our notations the axis of the anisotropy α corresponds to the c-
axis of a crystal). The experiment [9] really observed the strong dependence of the ESR signal
on the direction of the field H . The effective g-factor was 0.17 ± 0.07 for H parallel c and it
was much larger, 3.56, for H directed perpendicular to c. The experiment observed a negative
shift of the effective g-factor, related by the authors to the antiferromagnetic Kondo coupling.
On the other hand, in our theory the negative sign of 	ω is connected with the case Ta < TK

(due to the logarithm, see above). For T > 12 K the ESR linewidth manifested an exponential
temperature behaviour, related to the lowest CEF doublet. For lower temperatures an increase
of the linewidth linear in T was observed, in accordance with our theory. Using the data of
the experiment [9], T ∼ 5 K and TK ∼ 12 K, we obtain Ta ∼ 0.9 K, i.e. Ta � TK. Hence, our
theory manifests a qualitative agreement with the ESR experiments on YbRh2Si2. On the other
hand, one cannot expect a quantitative agreement of our theory with the experimental data,
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because our theory essentially uses a low concentration of magnetic ions, while in YbRh2Si2
the concentration of magnetic ions contributing to the ESR signal was, according to estimations
of the ESR intensity, 0.6.

Summarizing, we have developed the low temperature theory of the ESR for metallic
systems with multichannel magnetic (Kondo) impurities, coupled to conduction electrons
with magnetically anisotropic and channel-anisotropic interactions. We have shown that in
the absence of the magnetic anisotropy the ESR signal has a δ-function shape, if one does
not take into account electron–lattice or electron–nuclear couplings. We predict that the
anisotropy of couplings of conduction electrons of different channels to the Kondo impurity
introduces additional low energy scales, which define the behaviour of the low temperature
ESR characteristics. It is possible that two different low energy scales (two values of the
Kondo temperature), observed in experiments with YbRh2Si2, are related to such a channel
anisotropy.
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